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1. INTRODUCTION AND NOTATION

In Luke [1] and Fields [2], rational approximations to certain classes of
hypergoemetric functions are developed. The results include as special cases
the main and off diagonal entries of the Pade matrix [3, 4] for the Gaussian
hypergeometric function, one of whose numerator parameters is unity.
A well-known property of this matrix is that the numerator and denominator of
each entry satisfy the same three-term recurrence formula. Recently, Wimp [5]
derived explicit recursion formulae for a certain class of hypergeometric
functions closely related to the denominator polynomials of the Luke and
Fields approximations. Thus, it is natural to ask, using a modified form of
Wimp's analysis, whether the Luke and Fields approximations satisfy
recurrence properties similar to those of the Pade matrix. This and related
questions are answered in this paper.

The generalized hypergeometric function [6] is defined by the formal
expression

(1.1)

where

We assume that no f3j is a nonpositive integer. For ease in writing, we employ
the contracted notation

(1.2)

1 This work was sponsored by the United States Atomic Energy Commission under
Contract No. AT(ll-I)1619.
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Thus (OI:P)k is to be interpreted as In~1 (OI:Jk and similarly for (j3q)k' Similar
notations such as r(<xp) standing for II~~1 r(OI: j), and (<Xp)~"l standing for

will be used throughout this paper. Considered as a power series in z, pFq{z)
has a radius of convergence equal to infinity if p « q, unity if p = q + 1, and
(in general) zero ifp ;> q + 2. If one of the 01:j is a negative integer, the infinite
series in (1.1) terminates. If no <Xj is a negative integer, a meaning can still be
given to pFq{z), p ;> q + 2, by considering it as the asymptotic expansion as
z -+ 0, of a certain type of contour integral.

More generally, we define Meijer's G-function [6] by

m n

Gm.n(z a
p
) = J__ i _11 r(b

j ~~11 r(l- a
j + s) zSds

P. q 2' q p , (1.3)
bq 'TTl L II r(l-bj+s) II r(aj-s)

j~m+l j~n+l

where an empty product is interpreted as 1, 0 « m « q, 0 « n «p, the para
meters are such that no pole of r(b j - s),j = 1, ... , m coincides with any pole of
r(l - ak + s), k = 1, ... , n, and where the path L runs parallel to the imaginary
axis, and is indented to separate the poles of r(bm - s) from the poles of
r(l - an + s). The above integral is well defined if p + q < 2(m + n) and
larg zl < [em + n) - (p + q)j2]'TT. If all the poles of the integrand in (1.3) are
simple, it is easy to see from the residue theorem, that

Gm.n(z a
p
)P. q

bq

can be represented as a sum of well-defined hypergeometric functions, e.g.,

p < q or p = q and Izi < 1. (1.4)
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A similar expansion holds if p > q or p = q and Izi > 1, and follows directly
from (1.4) and the functional relationship

(
ap) ( 1- b

q
)Gm," Z-l = G",m z .p,q q,p

bq 1 - ap

Both functional relationships (1.5) and

(1.5)

(1.7)

(1.6)(
ap) ( c+ a

p
)

zCG;:~ z = G;:~ z ,
bq c + bq

follow directly from the integral definition (1.3).
A special case of (1.4) is

Ep.q(z) == G~::+l(-Z 1 - Cl.

p
)

0,1 - f3q

~ ~~,F.(;' z); p <q+ 1 or p~q+ 1, larg (-z)1 <~.

Thus, Eq+l.q{z) analytically extends q+lFq{z) into the region larg (1- z)1 < 71'.

Moreover, it can be shown [7] that for p ;;. q + 2,

larg(- z)1 < (p + 1 - q)71'/2, z --+ O. (1.8)

The formal Luke and Fields rational approximations to Ep,q{z), r/JnCz, y)/f,,(y) ,
are defined as follows. For a = 0 or 1, and the parameters An,k' y arbitrary, set

(1.9)

n

r/Jn(z, y) = 2: An. kyk Pk-a+1(Z),
k~O

= ~ r(r + Cl.p) zrpr+al(y)
~ r(r + f3 ) r! n ,
r-O q

~ -k~ An, r r(r - k + Cl.p) r

= k~ Z 6 r(r- k + f3q)(r - k)! (yz), (LlO)
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then

Po(Z) = o.

A,,8 arbitrary,

(1.11)

(1.12)

(1.13)

(1.14)

E () I
, ,pn(z, y)

P. q Z = 1m -f,( ) ,
n-.+oo n Y

under quite general restrictions on p, q, Z, y, etc. The significance of the para
meter a is plainly seen, if in the last line of (1.10) one successively sets Z= y-l
and y = O. For then ,pn(00,0) equals zero if a = 1, and is not equal to zero if
a = O. Classically, the cases a = 0 and a = 1 correspond to taking the odd and
even convergents, respectively, ofcertain continued fractions, see [6,8].

We note that if A n• k is chosen as in (1.12), the denominator polynomial
J,.(y) is of the general hypergeometric form

",Fr'n; A, ·'Iz)
which is known as the extended Jacobi polynomial. A limiting form of the
extended Jacobi polynomial is the extended Laguerre polynomial

'HF{:."' z). (1.15)

If n is not an integer, (1.14) and (1.15) are known as extended Jacobi and
Laguerre functions, respectively. In Section II, explicit linear recursion
equations for such polynomials (functions) are derived. In Section III, linear
recursion equations for the corresponding numerator polynomials, ,plz,y), are
also derived. Our results are stated quite generally.

In Section IV, we relate the material of the previous sections to the problem
of finding recursion relationships for the coefficients in the expansion of
Meijer G-functions in series of extended Jacobi and Laguerre polynomials.
In particular, it is shown in [9, 10, 11], that under sufficient restrictions,

(1.16)
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(1.17)

(
'e" ap

) r(1 _ ) '" (-I)nm,k+r Cr
Gp+r,q+s WZ = r(1- d) 2:n!

bq , ds S n=O

(
\
0, ap) (-n, 1 - erl )

x G;-i-~:~+l wI r+lFs Z •

Ibq , n 1 - ds I

For generalized hypergeometric functions, (1.16) and (1.17) can be interpreted
as

and

(1.19)

n arbitrary,

II. RECURSION FORMULAE FOR THE EXTENDED JACOBI AND

LAGUERRE FUNCTIONS

In the following, we shall derive a linear, nonhomogeneous difference
equation for the generalized Jacobi function,

(

-n, n + A, Of." 1 )
lffn(z, A) = r+3Fs Z ;

(Js

r+3~s, or r+2=s and larg(1-z)!<7T. (2.1)

Complementary to lffn(z, A) is the function

({Js - 1) Z-l

:Ytn(z, A) = (n + l)(n + A- 1)(Of., - 1)

(

2-{J.,1 1(_I)S-')
x s+lF'+2 1-- ,

2 + n, 2 - n - A, 2 - Of., Z

r + 1 ;;. s, or r +2 = sand larg (1 - I/z)1 < 7T, (2.2)



142 FIELDS, LUKE, AND WIMP

in the sense that both are particular solutions of the differential equation

[(0 + f3. - 1) - z(o - n)(o + n + A)(O + 0:,)] Y(Z) = (f3. - 1), (2.3)

where
, d

(0 + 0:,) = IT (0 + O:j), etc., 0 = z -. (2.4)
J~1 dz

We shall not only show that 6"nCz, A) and Jf;.(z,A) satisfy the same linear, non
homogeneous difference equation, but that a properly normalized basis of the
related, homogeneous differential equation

[(0 + f3. - 1) - z(o - n)(o + n + A)(O + 0:,)] Y(z) = 0, (2.5)

also satisfies the related, homogeneous difference equation.
To describe these bases, normalized with respect to n, it is convenient to

write down the following sets of conditions:

r+3.;;;s, or r+2=s and larg(I-z)I<7T,
no two of the parameters, f3h(h = 1, ..., s), differ by an
integer,

r+l;;;.s, or r+2=s and [arg(I-1jz)/<7T,
no two of the parameters, -n, n + A, O:k(k = 1, ..., r), differ
by an integer.

Under condition CO. A' we take for our normalized basis,

:F", h(Z, A)

= (n + f3h)I-{3h(n + A)I-{3h ZI-{3h

(

1, I - f3h - n, 1 - f3h + n + A, 1 - f3h + 0:'1 )
X '+3F. z

1 - f3h + f3. I
h= 1, ... ,s.

(2.6)

Alternatively, under condition COO. A' we take for our normalized basis,

~n.k(Z,A)

= (n + 1 + O:k)-CXk(n + A)-CXk Z-CXk

k= 1, ...,r. (2.7)
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~n,r+l(Z,.\)

r(n + 1) r(2n + .\) r(n + IXr) eint/> Zn
r(n + .\) r(n + f3s)

(

1 - f3s - n (_1)s-r)
x sFr+1 -- ,

1 - 2n - .\, 1 - IXr - n Z

~n, r+iz, .\)

r(n + l)r(n +.\ + 1 - f3s)e int/><s-r-o z-n-A

r(n + .\)r(2n +.\ + l)r(n +.\ + 1 - IXr )

(

n + A+ 1 - f3s (_1)s-r)
x sFr+1 --- ,

2n + .\ + 1, n + .\ + 1 _ IXr Z

where eit/> = -1.
With these definitions, we state
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(2.8)

(2.9)

(2.11)

THEOREM 2.1. The functions @"n(z,y) and ~n(z,y) under the conditions on r, s
and z in Co. Aand COO. A, respectively, satisfy the difference equation

t (f3s - 1)(n + A)n
f/Jn(z, A) + 2: [Am(n,.\) -I- zBm(n, .\)]f/Jn_m(z, A) = ( f3 _ 1)( A_ ) ,

m~1 n + s n + t n

t = max (r -I- 2, s), Bt(n, A) = 0 (2.10)

where

Am(n, A)

(n + 1 - m)m(2n + A- 2m)2m(n - m - 1 -I- f3.)
m! (n + A- m)m(2n + A- t - m)m(n - 1+ f3s)

(

-m, 2n + A- t - m, n - m + f3s )
X s+2Fs+1 1 ,

2n + A -I- 1 - 2m, n - m - 1 + f3s

_ (-)S(n + 1 - m)m(2n + A- 2m)(2n -I- A- t + 1)t-(n -I- A- t + 1 - f3s)
- (t - m)! (n -I- A- m)m(2n + A- t - m)m(n - 1+ f3s)

(

-t + m, 2n + A- t - m, n + .\ - t + 2 - f3s )
X s+2Fs+i 1 ,

2n + A+ 1 - t, n + ,\ - t + 1 - f3s
10
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(n + 1 - m)m(2n + ,\ - 2m)2m(n - m + c£r)
(m -I)! (n +,\- m)m(2n +,\- t- m + l)m_l(n-l +f3s)

(

1 - m, 2n + ,\ - t - m + 1, n - m + 1 + c£r )
X r+2Fr+l 1 ,

2n + ,\ + 1 - 2m, n - m + C£r

(-Y(n + 1 - m)m(2n +,\ - 2m)(2n +,\ - t + l)t-l(n +,\ - t + 1 - IXr)
(t - m - I)! (n +,\ - m)m(2n +,\ - t - m + l)m-l(n - 1 + f3s)

(

-t + m + 1, 2n + ,\ - t - m + 1, n + ,\ - t + 2 - C£r )
X r+2Fr+l 1 .

2n + ,\ + 1 - t, n + ,\ - t + 1 - C£r
(2.12)

In addition, the functions ~.h(Z,'\) (h = 1, ... , s) and f§n.k(Z,'\) (k = 1, ... , r + 2)
under the conditions Co. ), and Coo.)" respectively, satisfy the difference equation

t

q)nCz,'\) + 2: [Am(n,'\) + zBm(n, ,\)]q)n-m(z,'\) = O. (2.13)
m~l

Finally, ifno C£k is equal to any f3h' none ofthe above functions satisfy a nontrivial
equation of the form specified oflower order than t.

Proof By analytic continuation with respect to z, it is sufficient to prove the
theorem with the conditions Co,), and Coo.), strengthened to Iz I< I and Izi > 1,
respectively. Tentatively, we assume that no C£k is equal to any f3h, and that
we wish to prove

t

2: [Am(n,'\) + zBm(n, ,\)] q)n-m(z,'\) = K(q)n(z,'\)),
m=O

Ao(n, ,\) = I, (2.14)

where K(q)n(z,'\)) is a monomial in z, which depends upon the identity of
q)n(z,'\). A necessary and sufficient condition that tff,,(z,'\), fn(z,'\), ~.h(Z,'\)
or f§n.k(Z,'\) satisfy (2.14), is that when these functions are substituted in (2.14),
and the resulting equations are rearranged in powers of z, the coefficients of
zi, z-i, ZI-!3h+i and ZI-l1k-i (Uk = (Xk (k = 1, ... , r), ur+l = -n, ur+2 = n +,\ - t),
respectively, are zero for j = 1, 2, ... , while the terms corresponding to j = 0
reduce to K(q)n(z, '\)). In order to state these conditions explicitly, we introduce
the polynomials

Xt(w) = * (w-n)m(w+n+'\-t)t-mAm(n,,\),6 (-n)m(n +,\ - t)t-m
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Then, after some algebra, the above conditions can be written in the form

K(lff,.(z, A» = Xr(O),

(fls - 1) Yr(O)
K(fn(z, A)) = - (a, _ 1)(n + 1)(n + A- t - 1)'

K(~,h(Z,A»

= (n + flh)I-{3in + A- t)1-{3hXr(1- flh)ZI-{Jh, h = 1, ..., s,

145

K(t:§n, k(Z, A»
= - (n + 1 + ak)-ak(n + A- t)-ak Yr(1- ak)zl-at, k = 1, ... , r,

K(t:§n, '+I(Z, A))

T(n + 1) T(2n + A- t) T(n + a,) eln~ Y: (I ) l+n= - +nz
T(n +A- t) T(n + fJs) r ,

K(t:§n, '+2(Z, A»
- T(n + I) T(n + A- t + I - fls) el~(S-,-I)(n-f)

and

T(n + A- t)T(2n + A- t + I)T(n + A- t + 1- ar )

x Yr(1- n - A+ t)zl-n-il+t, (2.16)

, s

Xr(w)(w - n - 1)(w + n + A- t - 1) IT (w + ak - I) = Yr(w) IT (w + flh - I),
k~l h~l

(2.17)

whenever w = j, -j, 1 - flh + j or 1 - Uk - j, for tCn(Z,A), fn(Z,A), jZ:"n,h(Z,A),
or t:§n,k(Z,A), respectively.

As (2.17) can be viewed as a polynomial form in w ofdegree <.2t, (2.17) must
actually hold for all w. Moreover, as the ak and flh are independent of n, and
assumed unequal,

must divide Xr(w) (Yr(w», and the resulting polynomial will have degree
<. max (r + 2 - s,O) «. max (O,s - r - 2». Suppose r + 2 <. s. Then there
exists a number C independent of w such that

s

Xr(w) = CIT (w + flh - 1),
h-l

(2.18)
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and substitution of this identity into (2.17) yields

r

Yt(W) = C(w ~ n - l)(w + n + A- t - I) II (w -+ ak ~ 1). (2.19)
k" 1

The alternate assumption, r+- 2 ~ s, again leads to (2.18) and (2.19). The value
of the constant C follows from Xt(n), i.e.,

C= Xt(n) (2n+_~-:-_OtAo(n,A) (n+A)n (2.20)
(n + ,8s - 1) (n + A- t)t (n + ,8s - 1) (n + A- t)n (n + ,8s - 1)

Moreover, it follows from (2.16), (2.18) and (2.19), that

(,8s - l)(n + A)n
K(~(Z,A)) = K(~(z,A)) = (n +,8s -1)(n + A- t)n'

(2.21)
K(g;;., h(Z, A)) = K(C§", k(Z, A) ) = 0.

Finally, the values of A/in, A) (B",(n, A)) given in (2.11) «2.12)) follow from
(2.18) «2.19)) by an application of the following lemma.

LEMMA 2.1. IfPix) is a polynomial in x ofdegree q,

q

Pq(x) = c II (x - Wi)'
i~l

and t is an integer ~q, then Pq(x) can be represented uniquely in the form

t

Pix) = L (x + y)",(x + Y + E)t_", Q""
"'~O

Q = (-)q(t + E - 2m)(y + W q) C

'" m! (E)t+l-'"

(

-m, m - E - t, 1+ Y + Wql )
x q+2Fq+l 1 ,

1- e,y + W q I

(-I)q+t(y + E + t - m + wq)c

(t-m)!(l +e+t-2m)m

(2.22)

(2.23)

(

m - t, m - t - e, 1+ m - t - y - e - W q )
X q+2Fq+l 1 ,

1 +2m - t - E, m - t - y - E - W q
(2.24)

provided e # 0, ±I, ... , ±(t - I). Note that Qm = 0 ifm ~ t + 1. If(y + wq) or
(y + e + wq) are zero, limits must be taken in (2.24).



RECURSION FORMULAE 147

Proof We first show that given Pix), the coefficients Qm, if they exist at all,
are unique. Suppose there exists a set of Qm*'s which also satisfy (2.23). Then
by subtraction

t

2: (x + y)m(x + Y + €)t-m(Qm - Qm*) = 0
m~O

(2.25)

for all x. In (2.25) put x + y = -j, j = 0, 1, ... , t. Then by Cramer's rule,
Qm = Qm* for each m = 0, 1, ..., t provided that Ll, the determinant of the
coefficients of (Qm - Qm*) in the system derived from (2.25), does not vanish.
Clearly, Ll is a lower triangular determinant and is simply evaluated as the
product of all the elements on its main diagonal. Thus,

t

Ll = IT (_)m m! (€ - m)t-m,6 0
m=O

under the conditions on € given after (2.24).
Consider the representation formula

P (x) = *' (_)k(X + yMx + y + t) P (- _ k) (2.26)
q L...k!(t-k)!(x+y+k) q Y ,

k~O

which can be proved as follows: Since

(x+yMx+y+t)
-'-----~-'-------'::k---'-= (x + yMx + Y + k + 1)H,

x+y+

the right-hand side of(2.26) is a polynomial in x ofdegree t. By directcomputa
tion, the right-hand side of(2.26) agrees withPix) at the t + 1points x = -y - r,
r = 0, 1, ... , t. Since q ~ t, this is sufficient to establish (2.26). To derive (2.23),
we use Lemma A.l proved in the Appendix with n = t - k, f3 = (€ - t)/2 and
z=x+y+t. Thus

(€ - t)(x + Y + k),6 O.

(

€-t )k - t, x + Y + €, 1 + 2 ' 1

4}C3 1
€-t

1+€-k l-x-y-t--, , 2

(€ - k)(x + Y + t)
(€-t)(x+y+k)'

(2.27)

Now put (x + Y + t)/(x + y + k) from the latter formula into (2.26), express
the 4}C3 as a sum over m from 0 to t, interchange summation processes and
so obtain (2.23) with

Q = (t + € - 2m) ~ (-mMm - € - t)k p (_y _ k) (2.28)
m m!(€)t+l-m L... k!(l- €h q •

k~O
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Pq(-y - k) = (-)qc IT (y + Wj)(l + y + Wj)!, (2.29)
j~I (y + Wj)k

(2.28) and (2.29) reduce to the first line of(2.24). Finally, to get the second line
of (2.24), observe that

I

Pix) = .L (x + Y*)m(x + Y* + E*)I_m Qm*,
m~O

(2.30)

or
Qm = (-I)q(2m - E - t)(y + E + wq)c

(t - m)! (-E)m+I

(

m - t, -m + E, I + Y + E + W q )

X q+2Fq+I I .
1+ E,Y + E+ W q

Turning this last series expression for Qm around, we arrive at the second line
of (2.24), which completes the proof of the lemma.

Under our tentative assumption that no IXk is equal to any !3h' the preceding
lemma determines the Am(n,t\)'s and Bm(n,i\)'s uniquely. This is sufficient to
establish the last statement of the theorem. To see this explicitly, we note that
AI(n, i\) i' 0 and assume that one of the functions of interest, tPnCz, i\), satisfies
a difference equation of lower order than that specified, i.e.,

I'

.L [Am'(n, t\) + zBm'(n, i\)] tPn-m(z, i\) = Rn(z, i\),
m=O

Ao'(n, i\) = I (2.31)

but with t' < t. If in this assumed equation, (2.31), we replace n by n - I,
multiply the resulting equation by an arbitrary parameter PI and add it to the
original equation, (2.31), we would then obtain an equation of the form (2.31),
butwitht'replaced by t' + I. After t - t'repetitions ofthis process, the resulting
equation would still be of the form (2.31), but with t' replaced by t. Since, by
the lemma, the Am(n, i\)'s are unique, we would have, in particular,

At(n, t\) = PI-t' A;.(n - t, i\); PI-I" arbitrary,

which would contradict the nonzero uniqueness ofAI(n, i\). Finally, our tenta
tive assumption that no IXk is equal to any!3h can be relaxed completely by an
appeal to continuity. The only penalty exacted for such a relaxation is that the
Am(n, t\)'s and Bm(n, ..\)'s are no longer unique, and that the recurrence formulae
are no longer of the lowest possible order. This completes the proof of the
theorem.
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COROLLARY 2.1. The function

r((J) ( 0, 1+ n, 1 - n - A, 1 - CX,)

C(n, z, A)= r(-n) T(n +sA) r(cx,) G:+"3~~+l -z 0,1 _ ~s (2.32)

satisfies the difference equation (2.10), and ifno CXk is equal to any ~h' satisfies no
nontrivial equation ofthe sameform, oflower order than t.

Proof Under conditions CO••b C(n, z, A) = Cn(z, A), while under conditions
COO. A' it follows from (1.4) that C(n, z, A) differs from %n(z, A) by a linear com
bination of the functions ~n.k(Z,A) whose coefficients are independent of both
z and n, except possibly for a periodic function of n which has period unity.

Remark 2.1. The determination of the Am(n, A)'S and Bm(n,,\)'s was first
given by Wimp [5] in the special case that one of the ~h'S is unity. He gives two
proofs. One of these is algebraic and essentially stems from the solution of the
linear equation systems derived from (2.18) and (2.19) when one puts therein
w = 1 - ~h' h = 1, ..., sand w = 1 + n, 1 - n - A+ t, 1 - CXk, k = 1, ..., r,
respectively. The other proof shows that if the Am(n, A)'S and Bm(n,,\)'s are as
given, they can be represented by contour integrals and that Cn(Z,A) with one
of the ~h'S equal to unity satisfies the then homogeneous difference equation
(2.10).

Remark 2.2. The generalized Jacobi function t&;.(z, A) will lose its specialized
appearance, if we let s = q + 1 and set ~h = 1, h = q + 1.

Remark 2.3. As previously noted, under conditions Co. A(Coo. A)' the functions
.fFn.h(Z, A) (~n. k(Z, A)), form a basis of the differential equation (2.5), and hence
are linearly independent as functions of z. Although we have shown that these
same functions satisfy the difference equation (2.13), it is not known whether
they form a basis of solutions of (2.13), i.e., whether they are linearly indepen
dent as functions of n.

Remark 2.4. If the parameter condition in Co. Aor Coo. A is violated, additional
solutions of the difference equation (2.13) can be found via the same limit
processes used to find additional solutions of the differential equation (2.5).

Remark 2.5. If n is a nonnegative integer, no restrictions on r, sand z are
necessary for Cn(z, A) to be well defined and for the results of Theorem 2.1 to
hold. In this connection, care must be taken in certain limit processes which
may arise. For example, suppose r = 0, s = 1, 131 = 1. Then from (2.11), we
have A 1(n,A) = -(2n + A- 2) (A - l)[(n + A- l)(2n + A- 3)]-1. If we want
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A1(n, lI) for n = I and II = I, we must first set It = I and then let II -:>- I. Thus
A [(n, II) = -I for n = I and A1(n,lI) = 0 for n of I.

Consider the limit procedure (called a confluence with respect to II)

. _. (-n, n+ II, cx" liz)
hm tff,,(Z(II,II) - hm r+3F, 1_ ,
A~oo A~oo II

fls i

(

-n, cx" I )
= ,+2Fs fl, Z = tff,,(z), (2.33)

which is valid for r + 2 ~ s. Thus, results for the generalized Laguerre functions
can be deduced from those for the generalized Jacobi functions. In fact, if we
write down the conditions

r + 2 ~ s or r + I = sand larg (1- z)1 < 7T, ]
no two of the parameters, flh (h = I, ... , s), differ by an Co
integer,

r>s or r+l=s and [arg(l-lfz)I<7T, ]
no two of the parameters, -n, CXk(k = 1, ..., r), differ by an Coo

integer,

and let

lim tPn(Zfll, II) = tPn(z),
A~e<>

l1>n(z, II) =./t";,(Z, A), ~.h(z,lI) (h=l, ... ,s), ~n,k(z,A) (k=I, ...,r+I),

(2.34)

a limiting form of Theorem 2.1 and Corollary 2.1 is the following.

COROLLARY 2.2. The functions 6';,(z) and ./t";,(z) under the conditions on r, s
and z in Co and Ce<>' respectively, and the function

r(fl ) ( 0, I + n, 1 - CX,)
tC(n,z) = r(-n) Tccx

r
) G~+2:;+1 -z 0,1 _ fl, (2.35)

satisfy the difference equation

i = max (r + l,s), (2.36)
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where

(

-m,n - m + f3s )
A ( ) = (n + 1 - m)m(n - m - 1 + f3,) F 1

m n m! (n _ 1 + f3s) s+l s ,
n - m -1 + f3s

( 1 ) ( )
(

1 - m, n - m + 1+ IXrj )n + - m m n - m + IXr
Bm(n) = (m _ 1)! (n - 1 + f3s)- r+IFr 1 ,

n - m + IXr I
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(2.37)

( 1 ) ( )m-I r+ I-m ( )'
n + - m m - ""'. r - u '.. (i-m) ( )

= (m - I)! (n - 1+ f3s) L... (r + 1 _ m _ u)! B r+l-m-u Su n - m + IXr ,
u~o

(2.38)

where Bka) is the generalized Bernoulli number defined in (A.7), and where the
S.(Pq) are the symmetric polynomials defined implicitly by

(2.39)

In particular, Am(n) = 0, m ~ s + 1 and Bm(n) = 0, m ~ r + 2. In addition, the
functions~.h(z) (h = 1, ... , s) and ~n.k(Z) (k = 1, ... , r + 1) under the conditions
Co and Coo, respectively, satisfy the difference equation

t

if\(z) + 2: [Am(n) + zBm(n)] <Pn_m(z) = O.
m~I

(2.40)

Finally, if no !Xk is equal to any f3h' none of the above functions satisfies a non
trivial equation ofthe form specified oflower order than t.

Remark 2.6. The only part of Corollary 2.2 which does not follow directly
from Theorem 2.1 is the last statement, which is actually concerned with the
uniqueness of

Am(n) = lim Am(n, A),
iI-->oo

B ( ) -1' Bm(n, A)
m n - 1m , .

iI-->oo 1\

The uniqueness of the Am(n) and Bm(n) follows from the limiting form of
Lemma 2.1 when € --+ 00, i.e.,

LEMMA 2.2. IfFq(x) is a polynomial in x ofdegree q,
q

Fix) = c II (x - Wi),
i~I

(2.41)
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and t is an integer ;;,q, then Pix) can be represented uniquely in the form

t

Pix) = c 2 (x + Y)m Qm,
m~O

(2.42)

(2.43)

__ (_)q(y + wq)c (-m, 1+ Y+ wql )
Qm - , q+ i Fq II ,m.

Y+Wq

_(_)q-mc~ (q-u)! (-m)

- , ~ ( )' Bq - m- u Siy +wq),m. u=O q - m - u .

where B~a) is the generalized Bernoulli number defined in (A.7) and where the
Su(Pq) are the symmetric polynomials defined implicitly by (2.39). Note that
Qm = 0 for m ;;, q + I. If (y + w q) is zero, limits must be taken in (2.43).

Remark 2.7. The second lines of (2.37, 38, 43) follow by an application of
Lemma A.2. in the Appendix.

Remarks similar to those following Corollary 2.1 can also be made for
Corollary 2.2.

To illustrate the principal results of this section, we have for n a positive
integer that

satisfies the difference equation

(2.44)

4
f/>n(z, A) + 2 [Am(n, A) + zBm(n, A)] f/>n_m(z, A) = 0,

m~i

where

Bin,A)=O, (2.45)

Ai(n,A)

_ (n-I)(2n+A-2h(n-2+,8) {I- (2n+A-5)(n)(n-I+,8) },
- (n + A - 1)(2n + A - 5)(n - I +,8) (2n + A - l)(n - I)(n - 2 +,8)

Ain, A)

_ (n - 2h(2n + A - 4)in - 3 + ,8) {I _2(2n + A- 6)(n - I)(n - 2 + ,8)
- 2(n + A - 2h(2n + A - 6h(n - I + ,8) (2n + A - 3)(n - 2)(n - 3 + ,8)

(2n+A-6h(n)(n-1 +,8) }+ ,
(2n + A- 3h(n - 2) (n - 3 + ,8)
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A 3(n, A)

(n - 2Mn + A- 4)(2n + A- 6)(2n + A- 3)ln + A- 3 - fJ)
(n + A- 3)l2n + A- 7)ln - 1+ fJ)

x {l- (2n+A-7)(n+A-3)(n+A-2- fJ)},
(2n + A- 3)(n + A- 4)(n + ,\ - 3 - fJ)

Ain, A)

(n - 3)ln + A- 4)(2n + A- 8)(2n + A- 3)ln + A- 3 - fJ)
(n + A- 4M2n + A- 8Mn - I + fJ)

4

I + .L Am(n, A) = 0,
m~)

B)(n, A)

(2n + A- 2)in - I + oc)
= (n+A-l)(n-1 +fJ) ,

Bin, A)

_ (n - 1)(2n + A- 4Mn - 2 + oc) {I _ (2n + A- 5)(n - I + oc)},
- (n + A- 2M2n + A- 5)(n - I + fJ) (2n + ,\ - 3)(n - 2 + oc)

B3(n, A)

(n - 2M2n + A- 3)ln + A- 3 - oc)
(n + A- 3)l2n + A- 5)(n - I + fJ)

Here (n + u + fJ) is short for

and (n + u + oc) is short for

153

(2.46)

Similar recurrence formulae for any hypergeometric function oflower order
than Y',.(z, A) can be found by taking limiting forms of (2.45) and (2.46). In
particular, recurrence relationships for
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may be found by replacing z in (2.45) by Zf33; z/"A and letting f33;"A ~ ro. Ifboth
numerator and denominator parameters are to be removed from ~(z, "A), care
must be taken to obtain the nontrivial recurrence relation of lowest order
e.g., to obtain the recurrence relation for

(

-n,n + "A, 01:1 )

3F2 Z
f3" f32

from (2.45), we set 01:2 = f33 = n + "A + 1 - t, t = 4, so that Ain,"A) = B3(n,"A) = O.
Recurrence formulae for special cases of the above have been given by Fasen
meyer [12], and Rainville [13].

III. RECURSION FORMULAE FOR THE NUMERATOR POLYNOMIALS IN THE

RATIONAL ApPROXIMATIONS FOR THE GENERALIZED

HYPERGEOMETRIC FUNCTION

Suppose
n-I

F(z) = 2.. Irzr + Rlz),
r~O

(3.1)

wherelr is independent of nand z. In (3.1), replace n by k + 1 - a, a = 0 or 1,
multiply both sides by An. kyk, An. k = 0 if k > n, and sum from k = 0 to k = n.
Then, just as in (1.9), (1.10), we obtain

n n-k

!fin(z, y) = 2.. yk 2.. An, r+k lr(zyY,
k~a r~O

(3.2)

(3.3)

(3.4)

which can be interpreted as giving a formal rational approximation to F(z),
i.e., !fin(z, y)/hly)· As in (1.10), alternate expressions can be given for !fin(z, y).
In particular, !fin(z,y) is a weighted sum of partial sums of F(z). We now prove
that if hn(y) satisfies a linear, inhomogeneous recursion relation, then!fin(z,y)
satisfies another linear, inhomogeneous recursion relation and the homo
geneous portions of these recurrence relations are identical. This general result
is embodied in the following theorem.

THEOREM 3.1. Let hnCY), !fin(z, y) be defined as above. Let there exist constants
Km(n), Lm(n) and M(n) such that

t

2.. [Km(n) + yLm(n)] hn-m(y) = M(n),
m~O

Ko(n) = 1, 12;;;' t. (3.5)
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Further, if
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t

Qn(Z, y) = L [Km(n) + yLm(n)] 1fn-m(z, y)
111,-""0

It-a t

= ya L f,(zy)' L Km(n) An-m,r+a'
r~O m·~O
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(3.6)

(3.7)

and (3.5) is identified with (2.10), then

Q( )=[_ ]a[,8 _lp_a(2n+'\'-t)t r (n+'\'+a-t)
nZ,y ynar s (n+f3s-1)r(n+'\')

x ~ (a - n)in +,\. + a - t)kxr + a)jfizY)j,
7S (f3s+a-l)j

t = max (r + 2, s). (3.8)

Proof Combining the first expression of (3.6) with (3.4), we have

t n-m n-m-k

Qn(z, y) = L [Km(n) + yLm(n)] L yk L An- m,r+kf,(zy)'.
m~O k~a r~O

Observe that we can replace the upper limits of the rand k summation indices
by n - a and n, respectively, since An, k = °if k > n. Thus, we can write

t n n-a

Q.(z,y) = L [Km(n) + yLm(n)] L yk L An-m,r+kf,(zy)'
m~O k~a r~O

n-a t

= ya L f,(zy)' L Km(n) An- m,r+a
r~O m~O

It n~a t

+ L yk L f,(zy)' L [Km(n) An- m,r+k + Lm(n) An- m,r+k-d.
k~a+ 1 r~O m~O

But in view of (3.3) and (3.5)

t

L [Km(n) An- m, j + Lm(n)An-m, j-d = 0,
m~O

forj a positive integer. It follows that Qn(z, y) is given by the second line of(3.6).
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(3.9)

Next, we turn to the proofof(3.8). With An.kdefined by (3.7), and

C _ (-nMn + A- tM<Xr)k
n. k - (f3S)k '

(-n)m(n + A- t)t-m A
(k - n)m(k + n + A- t)t-m n-m. k'

it follows from (2.15, 18) that
t

2: Km(n)An- mk = en kXt(k),
O

••
m~

(f3s - l)(n + AM-nMn + A- tM<Xr)k
(n + f3s - l)(n + A- tMf3s - l)k

Combining (3.9) with (3.6), we arrive at (3.8). This concludes the proof of
the theorem.

The following corollary summarizes these results in a form convenient for
applications.

COROLLARY 3.1. Ifa = 0 or 1,

(3.10)

.pb,Y) = [_ yn(n+A)aif3q-I)]O
(f3 + 1) pg <Xp

X~ (-n + aMn + A+ aMaf + aM<XpMyz)k
6 (f3+ 1+ aMpg+ aMI + <Xp)kkl

(

-n + k + a, n + A+ k + a, af + k + a, f3q + k, 1 )
X f+H3Fti+P+l Y ,

f3+1+k+~~+k+~1+~+k

(3.11)

and t = max {f+q + 2, g +P + I},

K",(n,).)

(n+ I -m)..(2n+)'-2m)2",(n-m+{3) (n-m+p.-l) (n-m+ctp-a)
m! (n+>.-mM2n+).-t-m)",(n+{3) (n+p.-l) (n+ctp-a)

(

-m, 2n+).-t-m, n-m+!3+1, n-m+p., n-m+ctp+l-al )
x .+p+3F.+p+2 1 •

2n+)'+ I-2m, n,.-m+!3, n-m+p.-l, n-m+ctp-a
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= (_I)f+P+t (n+ I-m)m(2n+'\-2m) (2n+'\-t+ 1!,_t(n+'\-t-~)(n+'\-t+ I-p.) (n+'\-t-ocp+a)
(t-m)! (n+'\-m>m(2n+'\-t-m>m(n+~)(n+p.-I) (n+ocp-a)

(

-t+m, 2n+,\-t-m, n+,\-t+I-~, n+'\-t+2-pg, n+'\-t+I-ocp+al )
x g+p+3Fg+P+2 1 ,

2n+'\+ I-t, n+'\-t-~,n+'\-t+I-p., n+'\-t-ocp+a
(3.12)

(m-I)! (n+'\-m>m(2n+'\-t-m+ l)m-t(n+m (n+p.-I) (n+ocp-a)

(
I-m'2n+'\-t-m+I,n-m+I+af,n-m+I+~q-al )

x f+q+2Ff+q+t 1 ,
2n+'\+I-2m, n-m+a" n-m+~q-a

= (_I)fH (n+I-m>m(2n+'\-2m) (2n+'\-t+ l),-t(n+'\-t+I-af) (n+'\-t+I-~q+a)

(t-m-I)! (n+'\-m)m(2n+'\-t-m+ l),n-1(n+~)(n+p.-I) (n+ocp-a)

(

-t+m+1, 2n+'\-t-m+1, n+'\-t+2-af, n+'\-t+2-~q+al )
x f+q+2Ff+q+1 1 •

2n+.\+I-t, n+'\-t+I-a" n+'\-t+I-~q+a

(3.13)

then rfn(z, y)jhn(y) is aformal rational approximation to

such that

r f3(Pg - I)(IXp - a)(n + A)n2: [Km(n,A) + yLm(n,A)]hn_m(y) = (---- (3)( 1)( )( A )'
m=O n + n + pg - n + IXp - a n + - t n

(3.14)
and

r
2: [Km(n, A) + yLm(n, A)] rfn-m(z, y)

m=O

a I-a (2n+A-t)r T (n+A+a-t)
= [-ynaAf3. - 1)] [f3(Pg - 1) IXp ] (n + (3)(n + IX

p
_ a)(n + pg _ 1) T(n + A)

(

-n + a, n + A- t + a, af + al )
x f+2Fg+1 IYZ . (3.15)

f3 + a, pg - 1+ a

The difference equations (3.14) and (3.15) are homogeneous if
f3{Pg-l)(cx p -a)=O and [aAf3.-1)]4=0,

respectively. In the special case yz = 1, f = g = 0, A= IX + f3 + 1, Eq. (3.15) is
also homogeneous, if2 + a + cx - t is a nonpositive integer.
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(3.17)

Remark 3.1. Note that the f+2Fg+l on the right-hand side of (3.15) is an
extended Jacobi polynomial and so may be generated by application of the
recursion formula developed in Section II.

Remark 3.2. Care must be taken in (3.15) if a = 0 and f3(Pg - 1) approaches
zero. In particular, one must use the relation

(

-n, n + A- t, af )

f3(Pg - 1) f+2 F9+ I yz
13, pg - 1

= f3(Pg - 1)

(

1 - n, 1 + n + A- t, 1 + af' 1 )
+ (-n)(n + A- t)(af)(Yz) f+3Fg+2 yz .

1+ f3,pg,2

(3.16)

Remark 3.3. Should a numerator parameter a be equal to a denominator
parameter p in (3.10), (3.14) and (3.15) will in general reduce in length only if
a = p = n +,\ + 1- t. For particular numerical values of a = p(=In + A+ 1 - t),
(3.14) and (3.15), though still valid, are no longer the desired recursion formulae
of shortest length.

Remark 3.4. Confluent forms of Theorem 3.1 and Corollary 3.1 are easily
found by replacing y by YIA, and letting'\ -+ +w.

Remark 3.5. An alternate technique for the evaluation of fnCz,y) as defined
by (3.11) is the following: if

_ (-n + a + k, n + A+ a + k, Or + k, 1 )
Vn,k(Y)-r+3Fs Y ,

ws+k
then

V () _ 1 (-n + a-I + k)(n + A+ a-I + k)(Or - 1+ k) ( )
n,k-I Y - +y (ws-l +k) Vn,k y,

(3.18)

IV. RECURSION FORMULAE FOR PARTICULAR G-FUNCTIONS

In this section, we obtain a linear, homogeneous difference equation for the
G-functions

1/(n,w,'\) = G;+~.q+2(W a
p

+
1

),

bq, n, -n -- A

0< m < q, 0 < I<p + 1. (4.1)
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Clearly, "Y(n, w,.\) includes those G-functions occurring in (1.16) as coefficients
of the generalized Jacobi polynomials. As in Section II, properly normalized
bases of

{(_1)p-m-I W(O + 1 - Gp+,) + (0 - bq)(o - n)(o + n + .\)} Yew) = 0,

d
o=w~, (4.2)

dw

[an equation satisfied by "Y(n, w, .\)], also satisfy the above-mentioned difference
equation for "Y(n,w,.\). For example, if p > q + 1, the functions,

h= 1, ...,q,

(4.3)

with eiq, = -1, and

(

Gp+l )
f/,(n w .\) = GO.p+l we i1T(2k+m+l-p-1)k " p+l.q+2 ,

bq,n,-n -.\

k= 1, ... ,p-(q+ 1), (4.4)

form the desired basis, normalized with respect to n, in a proper sector of the
irregular singular point w = 0. Alternately, ifq + 1 > p, the functions

(

[Gk, GJ,' .. , Gk-J, Gk+J,· .., GP+1)
.YP.(n w .\) = Gq+2.1 we l1T (q-m-l+1)1k" P+l. q+2 ,

bq,n,-n -.\

11

k= l, ...,p+ 1,

(

Gp+l )ir. (n w .\) = Gq+2. ° we- i1T(2h+m+l-q)h " p+l.q+2 ,
bq,-n,n +.\

h= l, ... ,q+ I-p,

(4.5)

(4.6)
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form the desired basis, normalized with respect to n, in a proper sector of the
irregular singular point w = 00. We tacitly assume that all ofthe above functions
are well defined.

We now state our main result of this section.

THEOREM 4.1. Provided the functions f(n, w, ,\), C1Ih(n, w, ,\), 9'/«n, w, ,\),
~k(n, w,'\) or il'"h(n, w,'\) are well defined, they satisfy the difference equation

t

P(n, w,'\) + :L [Cin,'\) + w- I Din, ,\)] P(n + j, w,'\) = 0,
j~1

t=max(q+2,p+ 1), (4.7)

where

~(-I)j(2n+'\+2j)(2n+'\)j (-j,j+2n+,\,n+2-ap+I )
Cin,'\) - j! (2n + ,\) p+3Fp+2 1 ,

2n +,\ + t + I,n + 1 - ap+1

(-1)J+P+I(2n +,\ + 1Mn + A+ j - 1+ ap+l)
(t - j)! (2n +,\ + j)in + 1 - ap+I)

(

j - t,2n + A+ j,n + A+ j +ap+l )
x p+3Fp+2 1 ,

2n + ,\ + 2j + 1, n + A+ j - 1 + ap+l

(4.8)

(-I)j+p+m+I+I(2n +,\ + 2j)(2n + A+ l)in + 1- bq)
Dj(n,>") = (j-1)!(n+l-ap+l)

(

-j+1,2n+A+j+1,n+2-bq )
x q+2Fq+1 1 ,

2n+A+t+l,n+l-bq

(~I)j+p+m+l+q+I(2n + A+ j)(2n +,\ + IMn +,\ + j + bq)

(t - j - I)! (2n + >.. + j)in + 1 - ap+l)

(

j + 1 - t,2n +,\ + j + 1, n + >.. + j + I + bq )
X q+2Fq+1 1 .

2n + ,\ + 2j + 1, n + ,\ + j + bq

(4.9)

Moreover, ifno ak is equal to any bh, none of the above functions satisfy a non
trivial equation oftheform specifiedoflower order than t.

Proof Tentatively, we assume that no ak is equal to any bh and that w is
sufficiently restricted for the following manipulations to be valid. Consider the
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function Y(n,w,A). It follows from the integral representation for Y(n,w,A)
[see (1.3)], that, for Co(n, ..\) = 1,

j!(n,w,'\)

r
= 2: [Cin,'\)+w- I Dln,'\)]'i'""(n+j,w,'\),

)=0

(4.10)

where the contour L, independent ofj, runs parallel to the imaginary axis, and
is indented to separate the poles of F(bh - v) (h = 1, ..., m) from the poles of
F(l- ak + v) (k = 1, ..., I). Let R(v) denote the integrand of the first integral
in (4.10). Then, moving the contour of integration of the first integral in
(4.10) one unit to the left, we obtain

j!(n, w,'\)

where
q

P(v) = (v + 1 - n)(v + n + A+ t + 1) II (v + 1 - bh)
h-I

r

X L (n - v)JC-n - A-I - v)t-J Cin, A)
J=O

1>+1
- (_l)p+l+m II (v + 1 - ak)

k=1

r

X L (n-l- v)i-n-A- 1-1- v)t-JDJCn,A),
J=O

and R is the sum of the residues due to those poles of R(v) which lie betweenL
andL-l, if any.

We now determine the CJCn,A), DJCn, A) by requiring that P(v) = 0 for all v,
so that 9(n,w,A) reduces to just R. Then, under the assumptions that
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t = max (q + 2, p + 1) and ak i= bh , it follows, just as in the proof of Theorem
2.1, that there exists a constant C such that

1

:z: (n - v)j(-n - A- t - v)t-j Cin, A)
)=0

P+I
= C(_l)p+l+m II (v + 1 - ak),

k=1
(4.12)

1

:z: (n - 1 - v)i-n - A- t - 1 - V)I_) Din, A)
)=0

q

= C(v + 1 - n)(v + n + A+ t + I) II (v + 1- bh).
h=1

Setting v = n in the first line of (4.12), we find

C = (-l)l+p+l+m (2n + A+ 1)1 . (4.13)
(n + I - ap+1)

The values of Cin,A), Din,A) given in (4.8), (4.9) then follow directly from
(4.12,13) and Lemma 2.1. It also follows from (4.12) that

R(v) = C(_l)m+i
m I

II T(bk - v) II T(2 - ak + v)WV

x --'k'---~c=_ol,.------ k'---~_::.I _
q p+1
II T(l-bk +v) II T(ak -1-v)T(v+1--n)T(v+n+A+t+1)

I<=m+! k_l+!

which clearly has no poles between Land L - 1. Thus !len, w, A) = R = O.
Under our assumption that no ak is equal to any bh, the C)(n,A), Dln,A) are
unique, which implies that ~(n,w,A)does not satisfy a nontrivial equation of
the form specified of lower order than t. As before, the tentative assumptions
on ak , bh and w can be relaxed completely by an appeal to continuity. Similarly,
the other functions ofthe theorem can be shown to satisfy (4.7). This completes
the proof.

Remark 4.1. The functions e1ng, ~(n, w, A) with m = q + 1, e1g, = -1, and
~(n,w,A)with m = q + 2 also satisfy (4.7).

Remark 4.2. Confluent limits can be taken in Theorem 4.1. In particular,
recursion formulae for

~(n,w) = lim T(n + A+ 1) ~(n, WA, A),
A-->OO

(4.14)
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(4.16)

can be deduced from (4.7). The '~(n,w) occur as coefficients in the generalized
Laguerre expansion (l.l7).

Remark 4.3. To expand an arbitrary hypergeometric function p+lFiwz),
p .;; q, in a series of extended Jacobi polynomials, it follows from (l.l8) that
it is sufficient to consider

( ) n (n + O:p+1 )OI:p+I nW

~(w,,.\) = ((3) (n ,.\) p+IFq+1 W ,

q n + n n + (3q, 2n + ,.\ + 1

= T((3q)(2n + "\)T(n +-~(-I)nGl.p+1 (_ 1 - O:p+I )
T(OI: ) p+l. q+2 W ,

p+I n 1 - Q -n - ,.\, f'Jq,

(4.15)

n a nonnegative integer, p .;; q, or p = q + 1 and larg (l - z) I< 1r. Comparing
(4.3) and (4.15), we see that

rLJ ( ') = T((3q)(2n + ,.\) T(n + ,.\) Oft ( ')
l'>n W,I\ T() q+1 n, w, 1\

OI:p+1

with 1= p + 1, m = 0, 1 - OI:p+I = ap+1 and 1 - (3q = bqo Thus, recursion
formulae for ~nCw,"\) can be deduced from Theorem 4.1. In particular,

( )( )( )( )
(

n+0I:1,n+0I:2,n+0I:3,n+0:4)
g ( ,.\) _ 01:1 n 0:2 n 0:3 n 0:4 n n F

n w, - ((3I).((32).(n + "\)n W 4 3 n + (31' n + (32' 2n + ,.\ + 1 w

(4.17)

satisfies the difference equation

4
<Pn(W,"\) + L [Ein,"\) + w-1Fin,"\)]<Pn+lw,"\) =0,

j~1

Fin,"\) = 0, (4.18)

where

E (n ,.\) = _ (2n + ,.\) {I _(2n + ,.\ + l)(n + 0: + I)},
I' (n+"\) (2n+"\+ 5)(n+ 01:)

E (n ,.\) = (2n + "\)2 {I _ 2(2n +,.\ + 2)(n + 01: + 1) + (2n +,.\ + 2h(n + 0: + 2)} ,
2, 2(n + "\)2 (2n + ,.\ + 5)(n + 0:) (2n + ,.\ + 5h(n + 0:)

E (n ,.\ _ _ (2n + "\Mn + ,.\ + 3- 0:) {I _(2n + ,.\ + 3)(n + ,.\ + 4- OI:)} ,
3 , ) - (n + "\M2n +,.\ + 5h(n + 01:) (2n +,.\ + 7)(n +,.\ + 3 - 0:)

E ( ,.\ - (2n + "\Mn +,.\ + 4 - 0:) (4 19)
4 n, ) - (n + "\M2n + ,.\ + 5Mn + 0:)' •
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F (n A) = _ (2n + Ah(n + fi!) ,
1 , (n+A)(n+~)

F (n A) = (2n + A)in + fi!) {I _ (2n + A+ 3)(n + fi! + I)},
2, (n+AMn+~) (2n+A+S)(n+fi!)

F A _ (2n + A)in + A+ 4- fi!)
3(n, ) - - (n + AM2n + A+ Sh(n + ~) .

Here, (n + u + ~) is short for

and (n + u + fi!) is short for

2

I1(n+u+fi!j)'
j~l

Similar recurrence formulae for any hypergeometric function oflower order
than ,q,,(Z,A) can be found by taking limiting forms of(4.18) and (4.19).

ApPENDIX

LEMMAA.I.

(

-n, fi! + 1, 1, z + 2fi!) zen + 2fi!)
4F3 1 =----,

2Q(z - n)n+2fi!+I,fi!,I-z fJ

n = 0, 1,2, ... ; fil(z-n) # 0. (A.I)

Proof Let V(z) equal (-Z)-l times the hypergeometric function appearing
on the left-hand side of (A. 1). Clearly V(z) is a rational function of z, with the
degree of the denominator polynomial one greater than that of the numerator
polynomial. Moreover, as the poles of V(z) are simple and located at
0, I, ... , n, we can write

"
V(z) =~ 3.L..

L.a-I
J=O

(A.2)

_ (-I)J-1(-n)ifi! + 1)/2fi! + j)j (-n +j,~ + I +.j,2j + 2~ )
qj - _! ( Q (Q) 3F2 1 .

J. n+2fJ+l)jfJj n+2f3+1+j,f3+j
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Then, making use of the relation

(

-n +j,[3 + 1+j,2j + 2[31 )
3F2 1

n + 2[3 + 1 +j, [3 + j I

= 2
F

)(-n +j, 2j + 2(31
1
) __~ - j)_ 2

F
)(-n + j + 1, 2j + 2[3 + 1 1)'

n+2[3+ 1 +jl (n+2[3+ 1 +j) n+2[3+2+j

(A3)

together with Gauss' theorem [6] for summing a 2F) of unit argument, we find

q . = (_I)(n + 2(3) J' = n,
J 2(3'

(A4)
=0, j=O,I,.,.,n-l,

which proves (AI).

(A5)

where the Sr(ap ) are the symmetric polynomials defined by

(A6)

(A.7)

and the B5-m
) are the generalized Bernoulli numbers defined by

(~..:::-J)m = ~ t..!. B~-m) Bo<-m) = 1.
t Lj! J ,

j~O

If(ap ») is zero, limits must be taken in (A.5).

Proof Let 0 = xD = x(djdx). It follows from the simple operator equation
(0)(0 - 1) ... (0 - 11 + 1) = x 2 Dn, and the finite difference formula, see [14,
p. 150, Eq. (90)],

x k = rt (~) Bk=~) x(x - 1) ... (x - r + I), k = 0,1, ..., (A8)

with x replaced by 0, that

Ok = ±(k) m=~) x r Dr, (A.9)
r~O r
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or
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p p p-m (m +j)
n(D+aj)= m~oxmDm j~O m Bj-m)Sp_m_iap). (A 10)

Now letting (A1O) operate on xP, and making use of the operator equation
(D +a)xP= xP(p + a), we obtain

p p p-m (m + j)n(x + al) = m~o x(x -1)'" (x - m + 1)"1:0 m Bj-m)Sp_m_iap),

(All)

or

p-m (m +j) 1 { p }I2: Bj-m) Sp-m-iap) = ,Llm II (x + aj) ,
j~O m m. J~1 X~O

where Ll is the forward difference operator with respect to x. Since

1 m { p } I (_)m ~ (-m)r p

m!Ll n(x+aj) X~O =m! 6 -T n(r+aj),

(A.l2) reduces to (A.S).
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